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Abstract— This paper deals with the interest in in-
troducing some artificial chaotic dynamics within associa-
tive memories (namely, Attractor Neural Networks) to per-
form pattern recognition from either static images or im-
ages streams. In particular, a great attention is paid to the
use of chaotic inhibitory interneurons, leading to propose a
selective criteria which facilitates, in some sense, the dis-
crimination of retrieved patterns. This criteria is based on
the consideration of the energy of each neuron (modelized
as dynamical systems) and affords to characterize the neu-
ronal activity of each of them with respect to the probability
of associated pixels (i.e. input stimuli) to belong to one or
more stored pattern(s). Then, through simulation results
this paper studies the effects of adding chaotic dynamics to
input stimuli, from a network reactivity viewpoint. Finally,
some concluding remarks and potential extensions of this
work are presented.

Index Terms—Associative memory, chaos, dynamical sys-

tems

I. Introduction

In many fields of robotics related to entertainment, do-
mestic, or medical applications ..., pattern recognition from
image or video sequences plays a central role:

• in capturing some environmental properties (e.g.
recognition of the ball within a soccer robots scene),

• in performing some tasks (e.g. visuomotor coordina-
tion of a robot arm),

• in enhancing human-robot interactivity (e.g. human
face and gesture perception for capturing human cog-
nition properties).

To deal with such a task (including pattern storage and
retrieval, classification, finding of similar objects, ...), use
of artificial neural networks has received a great attention
for many years (for instance, see [4] and references therein).
In particular, in the light of some investigations related to
computational neuroscience, an increasing attention has
been paid, over the past few years, to Attractor Neural
Networks1 (AANs). However, both design and exploita-
tion of such networks is not trivial2. This motivates, for
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1 i.e. networks of interconnected dynamical systems as cells (i.e.
neurons), for which convergence properties to particular states rep-
resent the essence of pattern recognition processes.

2 For instance, training procedures may be CPU intensive and may
produce spurious attractors and/or ill-conditioned attractor basins.

part, the growing interest in considering neuronal archi-
tectures (including neurons modelling) based on biologi-
cal inspirations, as such a basis provides many pertinent
and efficient actual implementations. Then, with regard
to such a (biological) context, several investigations have
pointed out that some human and animal brain activities
exhibit chaotic (or chaotic-like) behaviors (e.g. see [2], [15],
[7], [1]). In addition, some works have shown that artificial
stimulation of brain by chaotic waves can someday avoid
elliptic seizures, inhibit Parkinson disease, etc ... (e.g. see
[3]). However, despite of these results, information pro-
cessing capability related to chaotic brain dynamics is still
obscure, and motivates the effort in understanding, gener-
ating and/or taming chaotic phenomena in relation with
true or artificial brains. According to this purpose, the
present paper investigates the contribution of chaotic sig-
nals for improving the performance of (artificial) associa-
tive memories devoted to pattern storage and recognition.
In particular, the present work considers the problem of
recognizing some patterns in black and white images, in
case of noisy input stimuli (i.e. images with erroneous pix-
els which do not belong to one of the memorized patterns),
and incomplete input patterns.

This paper is organized as follows. First, section II intro-
duces some motivations and the framework of the present
work. Then, section III deals with the contribution of
chaotic inhibitory interneurons to pattern recognition (in
relation with dynamical behavior of AAN). Then, section
IV is devoted to the interest of introducing artificial chaotic
dynamics within postsynaptic potential (related to excita-
tory neurons). Finally, some concluding remarks and po-
tential extensions of this work are given in section V.

II. Motivations and framework

First, let us mention that, according to complexity the-
ory, a complex system can be defined as one in which
numerous independent elements continuously interact and
spontaneously organize and reorganize themselves into
more and more elaborate structures over time. With such
a concept in mind, a natural question which arises is : Can
disordered or seemingly disordered activities of elementary
neurons produce some interesting, ordered, (global) behav-
iors of a whole AAN ?

To investigate such an idea, we consider, in this paper, a
fully interconnected Attractor Neural Network (used as au-

Moreover, convergence of the distributed sensory cells to well defined
and distinct subsets of the state space may be not guaranteed.
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toassociative memory) to store and retrieve some patterns
related to 16x16 pixels, black and white images (each pixel
being associated with an unique excitatory neuron). Ex-
amples of two patterns to recognize are depicted in figures
1 and 2.
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Figure 1. Pattern 1 to retrieve: A horizontal key
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Figure 2. Pattern 2 to retrieve: A vertical key

Remark 1 With regard to figures 1 and 2, let us note that
the two patterns share some common pixels corresponding
to a square form with a hole in the middle. Thus, in case of
incomplete input patterns (i.e. stimuli) with pixels mainly
relevant to this common shape, the recognition challenge is
to determine which stored pattern is truly involved.

A. The Attractor Neural Network (AAN) model

Motivated by some phenomenological observations,
made by Rolls and Treves (see [17]), which suggest that
CA3 region of the hippocampus behaves like an autoasso-
ciative memory (see also [10]), we consider, in this paper, a
corresponding AAN as defined in [6]. This AAN consists in
a fully interconnected3 network composed of 16×16 = 256
excitatory neurons4 plus one interneuron providing feed-
back inhibition (i.e. an inhibitory interneuron). During
pattern learning, input stimuli cause some excitatory neu-
rons to become active, and the synaptic connections be-
tween each pair of active neurons are then modified (Hebb
Rule). Such a modification is defined here by the following
relation,

wij = kH(Ri − 0.5M)H(Rj − 0.5M) (1)

3 Each excitatory neuron has 255 excitatory synaptic inputs plus
one synaptic input coming from the inhibitory interneuron.

4 Each excitatory neuron being associated with one pixel of the
input image (i.e. the input stimulus) presented to the AAN.

with,

H(ζ) =

{

1 ζ > 0
0 ζ ≤ 0

(2)

where M ∈ R
+∗ is the maximum firing rate of the neu-

rons (here, M = 100 spikes/s), wij ∈ R
+ is the (tunable)

weight of the synaptic connection between the ith excita-
tory neuron and the jth one. Ri (resp. Rj) is the firing
rate of the ith (resp. jth) neuron. k ∈ R

+∗ is a weighting
factor (here, k = 0.016)

Remark 2
• According to (1) and (2), synaptic connexions are

strengthened only when both ith and jth involved neu-
rons are firing at greater than half their maximum
(firing) rates. In this case, the synaptic weight wij

changes to the fixed value k.
• As pairs of neurons are reciprocally interconnected,

this implies that synaptic connections are modified
identically (i.e. wij = wji)

Then, from a mathematical viewpoint, the excitatory
and inhibitory parts of the AAN can be defined respec-
tively as follows.

Excitatory part:

Based on spike rate descriptions, dynamical behavior of
each excitatory neuron i can be defined by (see [6]),

10
dRi

dt
= −Ri +

σ2 × PSP 2
i

σ2 + PSP 2
i

, Ri(0) = 0 (3)

where Ri ∈ R
+ is the firing rate of the ith excitatory neu-

ron (i = 1...256), σ ∈ R
+∗ is the semi-saturation constant

(here, σ = 10), and PSPi characterizes the postsynaptic
potential defined by

PSPi = Si +

256
∑

j=1

(wij ×Rj)− δ ×G (4)

where G ∈ R
+ is the firing rate of the inhibitory in-

terneuron, δ ∈ R
+∗ is a weighting factor (here, δ = 0.1),

wij is defined by Eq. (1), and Si characterizes the stimu-
lus exciting the neuron i during a finite time tstimulation.
As images presented to the network are black and white
ones, Si can be defined as,

if t≤ tstimulation

{

Si = 0 ← black pixel

Si = 1 ← white pixel

else Si = 0
(5)

Inhibitory part: In order to perform a comparative
study, we consider either non-chaotic or chaotic inhibitory
interneurons defined respectively as follows.
Non-chaotic inhibitory interneuron:

10
dG

dt
= −G + γG

256
∑

i=1

Ri, G(0) = 0 (6)

where γG ∈ R
+∗ is an input synaptic weight (assumed

to be here: γG = 0.076), G ∈ R
+ is the firing rate of the

inhibitory interneuron.
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Chaotic inhibitory interneuron:

By considering the objective of the present work and
the common use of (equivalent) electrical circuits as neu-
ron representation (e.g. [14], [8]), we propose to consider
here an electronic implementation of a chaotic circuit, re-
ferred to as Chua’s circuit, as inhibitory interneuron with
chaotic dynamics (see Fig. 4). This chaotic oscillator can
be formulated as a dimensionless system of the form (see
[16]),

.

X = f(X) ⇔







.
x = α (y− x− fd(x))
.
y = x− y + z
.
z =−βy

(7)

where X = [xy z]T is the state vector. α, β and γ are sys-
tem parameters. The nonlinear diode of Chua is character-
ized by: fd(x) = bx + 1

2
(a− b) (|x+ 1| |x− 1|) where a and

b are two constant parameters. Here, α = 10, β = 14.87,
γ = 1, a =−1.27, and b =−0.68.
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Figure 3. Basic electrical circuit of Chua’s oscillator
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Figure 4. Example of Chua’s oscillator chaotic trajectory

We then propose to consider a chaotic inhibitory in-
terneuron defined by,

G = E γG

256
∑

j=1

Rj (8)

with

E =
1

2

(

x2 + αy2 +
α

β
z2

)

(9)

where E is a positive definite function which character-
izes the energy of the Chua’s circuit, and γG ∈ R

+∗ is a
weighting factor.

Remarks 3

• According to (8)-(9), firing rate G of the chaotic in-
hibitory cell is always positive-valued for all time t

(with some analogy to the non chaotic one defined by
Eq. (6)).

• All excitatory neurons are connected to the inhibitory
interneuron which provides recurrent subtractive inhi-
bition (see Eqs. (3) and (4)) to regulate the neuronal
activity (i.e. to lead to a balance between inhibition
and excitation). Thus, magnitude of G, and there-
fore tuning of γG (within an admissible range), is of
a crucial importance to obtain either convergence of
the AAN towards stable steady states (case of AAN
with non-chaotic inhibitory cell) or specific topological
configurations with invariant properties (case of AAN
with a chaotic inhibitory interneuron, as discussed
further in section III.B). Here, we will consider:
0.025 < γG < 0.75 in case of non-chaotic inhibitory
neuron, and a smaller range 0.0226 < γG < 0.0229 in
case of a chaotic one.

• According to (8) and (9), the chaotic inhibitory in-
terneuron behaves like a dynamical system, as implic-
itly related, through the term E, to ordinary differen-
tial equations characterizing the Chua’s circuit.

III. Contribution of a chaotic inhibitory

interneuron

Before to deal with the contribution of a chaotic in-
hibitory interneuron to the whole AAN dynamical behav-
ior, this section first points out some practical conditions
inherent to the use of such a kind of interneuron.

A. Role of initial conditions (of the chaotic circuit)

It is well-known that balance between inhibition and ex-
citation plays a crucial role in generating of neuronal ac-
tivity and, therefore, in leading to successful recognition of
patterns. Thus, according to Eqs. (8) and (9), success and
even performance of pattern recognition clearly depends
on the magnitude of E and, therefore, on the orbit the
Chua’s circuit is tracking during the corresponding tempo-
ral window. Therefore, according to properties of chaotic
systems5, initial conditions of Chua’s circuit have to be
carefully selected (excluding random initial conditions to
guaranty the repeatability of the recognition processes)6.
For instance, Figs. 6 and 7 show respectively unsuccessful
and successful recognition of a stored pattern, in case of
same input stimuli depicted in Fig. 5, same stimulation
time, and two different but very close sets of initial condi-
tions. Indeed Fig. 6 shows that neuronal activity of each
excitatory neuron converges towards zero (meaning that
pattern recognition failed). Conversely, with small changes

5 in case of deterministic chaos
6 random initial conditions have also to be avoided to guaranty the

chaotic motion of Chua’s circuit
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of initial conditions (x(0) = 0.320 instead of x(0) = 0.350),
the pattern recognition succeeds as shown through Fig. 7.
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Figure 5. Input stimulus (incomplete vertical key with erroneous
pixel as additive noise)
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Figure 6. Neuronal activity of some representative neurons in case
of initial conditions: x(0) = 0.350, y(0) = 0.155, z(0) = −0.008 (see
Appendix I for correspondence between colored plots and involved
neurons)
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Figure 7. Recognized pattern in case of initial conditions: x(0) =
0.320, y(0) = 0.155, z(0) = −0.008)

B. Contribution of a chaotic inhibitory interneuron

In order to evaluate the interest of introducing chaotic
dynamics within the inhibitory interneuron behavior, let
us first consider some simulations results coming from the
consideration of the non-chaotic AAN (as defined by Eqs.
(3) and (6)). Moreover, let us consider the input stimuli of
Fig. 5, whom particularity is that only one pixel can lead
to discriminate between patterns 1 and 2 (see Figs. 1 and
2). Then, nearly optimal tuning of parameter γG (that
is γG = 0.0732) leads to the neuronal activity depicted in
figure 8 (corresponding to a successful retrieval of pattern
1).
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Figure 8. Neuronal activity of some representative neurons in case
of non chaotic AAN (see Appendix I for correspondence between
colored plots and involved neurons)

Figure 8 clearly shows that the firing rate Ri of each
neuron can take only two distinct values once the AAN
has reached a stable state. Thus, with such a non-chaotic
AAN, pattern recognition is of a binary type (a stored pat-
tern, but not necessary the true one, is retrieved or not).
Now repeating the same experiment7 with the consider-
ation of a chaotic inhibitory interneuron (see Eq. (8)),
we then obtain some representative neurons behaviors as
shown in figure 9 (which also corresponds to retrieval of
the true pattern.)
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Figure 9. Neuronal activity of some representative neurons in case
of AAN with chaotic inhibitory interneuron (see Appendix I for cor-
respondence between colored plots and involved neurons)

With regard to figure 9, we can remark that:

• Firing rate of neurons can take several distinct values.
• Firing rates of all excitatory neurons which do not be-

long to one of the memorized patterns, stay or con-
verge towards zero (depending on both initial stimu-
lation (case of an erroneous pixel) and coupling evo-
lution during the recognition process).

• Firing rates of excitatory neurons which belong to one
of the memorized pattern, do not converge towards
steady state values, meaning that the AAN does not
reach any stable state. However, we can note that
the AAN reaches a topological configuration with in-
variant properties. Indeed, after a short time t (for
instance t = 50s in case of figure 9), a relative scal-
ing of firing rates appears. With some analogy with

7 with same stimulation time
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fuzzy logic, this scaling follows a rule of the form : The
highest is the magnitude of the firing rate the highest
is the probability of the (excited) neuron to belong to
the true pattern to retrieve.

As illustration of this scaling rule, Fig. 9 shows that neu-
rons associated with the form shared by the two memorized
patterns own the highest firing rate magnitude (black plot
in fig. 9), as these neurons must belong to the right pat-
tern. Conversely, neurons associated with the horizontal
key shape own the lowest non-zero firing rate. By using a
greyscale coding to characterize the neuronal activity we
then obtain the following figure 10.
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Figure 10. Greyscale coding of neuronal activity in case of AAN
with chaotic inhibitor

Consequently, introducing of chaotic dynamics within
the inhibitory cell can facilitate, in some sense, the dis-
crimination between retrieved patterns (in particular when
dealing with highly incomplete stimuli).

Remark 4 In case of non-chaotic AAN, reach of a vicin-
ity of the steady-state has to be effective before to conclude
on the retrieved pattern. In case of AAN with chaotic in-
hibitory interneuron, some conclusions can be made once
the relative scaling of firing rates is effective. Then, when
comparing results of figures 8 and 9, chaotic ANN appears
to be faster, and then more suitable to envisage the treat-
ment of images streams.

With regard to figure 9, such a plot is not really suit-
able for quantitative discrimination as it involves to de-
fine a magnitude threshold to distinguish between neurons
which really belong to the pattern and those which may or
do not belong to the right pattern (even if, in the last case,
the firing rate is close to zero). To overcome this thresh-
old design, we propose to make use of an another criteria
that is to characterize the activity of each excitatory neu-
rons versus the inhibitory one. As a result, we then obtain
a plot as in figure 11. According to that, discrimination
can be made by means of considering the areas where the
neuronal activity belongs, in the mean. More precisely, by
considering the bisectrix (which characterizes a magnitude
of the excitatory neuron equal to those of the inhibitory
one), averaged neuronal activity lying up the bisectrix cor-
responds to a neuron which belongs to the right pattern
to retrieve (conversely an averaged firing rate lying on or
down the bisectrix corresponds to a neuron which actually
do not belong to the pattern). Moreover, with regard to
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Figure 11. Neuronal activity of the chaotic AAN (see Appendix I
for correspondence between colored plots and involved neurons)

the upper part, the distance between the activity area and
the bisectrix characterizes the probability that a neuron
belongs to the pattern.

IV. Chaotic excitation

As pointed out in [5], introducing of a noisy signal
(namely, white noise) in addition with the stimuli, can
enhance the reactivity of a neural network. Such a reac-
tivity is of great importance in order to deal with streams
of images rather than static images. Thus, this section
is devoted to evaluate the interest in introducing artificial
chaotic signals (instead of white noise) within the stimulus
of each excitatory neurons. In this objective, we consider
here a postsynaptic potential (PSP) of the form,

PSPi = Si +





256
∑

j=1

wijRij



− 0.1×G + SE (10)

where firing rate G is coming from a non-chaotic inhibitory
neuron (as defined by Eq. (6)) and SE is an additive,
artificial, chaotic signal that we propose to be of the form,

SE =
1

2
× E × γE × ΣRj (11)

where E is given by Eq. (9)
Remark 5 Parameter γE is a weighting factor to tune
carefully in order to keep on some dynamical properties of
the network (i.e. the effects of image stimuli) while main-
taining an artificial, remaining excitatory signal.

First, let us consider a non-chaotic AAN stimulated by
an image as depicted in figure 12. In this case, the image
must be presented during at least tstimulation = 1.44s to
obtain some effective neuronal activities (leading to the
true pattern retrieval), as shown in figure 13.

Now, in order to make some comparisons, let us con-
sider the AAN with “chaotic” postsynaptic potentials (see
Eq. 10). Then, appropriate choice of initial condi-
tions for the Chua’s circuit and tuning of parameter γE

(here γE = 0.28), enable to limit to a stimulation time
tstimulation ≤ 0.6s, as shown through results of figure 14.
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Figure 12. Incomplete and noisy stimulus
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Figure 13. Neuronal activity of the non chaotic AAN in case of stim-
ulation time tstimulation = 1.44 (see Appendix I for correspondence
between colored plots and involved neurons)

Therefore, addition of remaining chaotic signals to stim-
ulation ones enhance the global reactivity of the network.
However, a small stimulation time leads to a huge duration
before the network reaches a steady state. Moreover, such
an additive signal excites the whole set of excitatory neu-
rons (including those which do not belong to any stored
pattern). This leads, in fine, to artificially increase the
firing rate of neurons associated to a wrong pattern (see
figure 15 based on greyscale coding), and to intricate the
discrimination.

V. Conclusion

This paper has shown that introducing of artificial
chaotic dynamics within inhibitory interneurons leads the
whole ANN behavior to exhibit topological configurations
with invariant properties, instead of a finite number of
steady states. When dealing with pattern recognition, such
an emergence of configurations facilitates, in some sense,
the discrimination of retrieved pattern, with some analogy
with fuzzy logic. This paper has also shown that remain-
ing artificial chaotic signal in addition with input stimuli,
enhances the reactivity of the network, and affords to limit
the stimulation time (for pattern recognition). However,
such a signal excites the whole set of neurons, and intricate
the discrimination of retrieved patterns. Future works will
deal with coupling of neurons in order to address the prob-
lem of pattern recognition with AAN in case of geometrical
transformations of input patterns (dilatation, rotations ...
).
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Appendix

A. Appendix I

Preliminary remark: For all concerned figures, neuronal
activity is characterized by the quantity 1

2
R2

i (where Ri is

the firing rate of the ith neuron). This quantity is assumed
to represent the energy of each neuron (modelized as dy-
namical system).

Correspondence between colored plots and

neurons

Deep blue Excited neuron belonging to the true
pattern to retrieve

Light blue Non-excited neuron belonging to the
true pattern to retrieve

Deep red Excited neuron which does not belong
to the true pattern to retrieve

Light red Non-excited neuron which does not be-
long to the true pattern to retrieve

Black Excited neuron belonging to the two
patterns

Yellow Inhibitory neuron
Green Excited neuron with an erroneous pixel

(noisy pixel)


